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» Search for New Physics in transitions
— Measurement of the properties of oscillating particles

» B% and K° are well explored by other experiments

» B? sector still partially unexplored.

» 2006: Mixing frequency Am; of the BY measured by CDF and D@
» Now: Measurement of the mixing phase [

> Accessible through interference of decays with and without mixing

By — J/W(— ptp”) o(— KTK™)
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The CKM Matrix

> The Cabibbo-Kobayashi-Maskawa matrix connects mass and weak quark
eigenstates

Vud Vus Vub
Vcd Vcs Vcb
Vie Vis Vo

» To conserve probability, CKM matrix must be unitary.

> Unitary relations can be represented as unitarity triangles.

VaaViy + VdViy + ViaViy = 0 ViV + ViV + ViV = 0
) "
VLV o ®n VeVid
VVs Ty | 00 %0
©0 0

> Subject of this measurement = arg(— v ﬂ(IT



The Neutral B%-System

Time evolution of B; flavor eigenstates described by Schrodinger equation:

S (502) o) (50)

Diagonalize mass (M) and decay matrices (I') — mass eigenstates:
B(t) > = plBI(t) > —q|BI(t) >
|B:(t) > = p|B(t) > +q|BJ(t) >

Flavor eigenstates differ from mass eigenstates and mass eigenvalues are
different. Bs oscillates with frequency Ams = my — my = 2| M|

CDF Do
Ams = (17.77 £0.12)ps* Ams = (18.56 £ 0.87)ps "

Mass eigenstates have different decay widths:

AT =T, — Ty ~ 2| 12|cos(ps) with | ¢s = arg( - @>

M2
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Relationship of the Phases

The different phases and their SM expectation value:

M Vis Vi

SM 12 3 SM ts Vip

— —2 | ~4-10 d = - =0.02
s arg( r12 ) an s arg( \/CS ch)

New Physics affects both phases by same quantity *:

23V = 2™ — ¢l
Ve = M gl

If the new physics phase ¢ dominates over the SM phases 282" and ¢
— neglect SM phases and obtain:

261" = gl = —g!/*

IT

B arxiv:0705.3802v2



Decay Topology

B,  — JV(optpT) 6(— KK

(spin=0) (spin=1) (spin=1)

Conservation of angular momentum lead to three different final states:
L=0,2 (s-wave),(d-wave) CP even
L=1 (p-wave) CP odd

Choice of basis:

Transversity basis with
corresponding decay

amplitudes:
A, CP odd
Ao CP even
A CP even
and angles
]/ W rest frame R ﬁ: (WT, 07, ¢T)

?hep-ph/9511363 :é!(IT



Tevatron: circular particle accelerator at the
Fermilab (near Chicago, Illinois)

v

v

Proton-Antiproton collisions
Vs =1.96TeV
Two detectors: CDF and Do

\4

\4

Luminosity / Experiment:

Int. Lumi. bt
delivered ~ 5.0
on tape ~ 4.2

this analysis =~ 2.8

T




The Detectors

CDF Do
» Strong tracking system » Large muon and tracking
» Good particle identification coverage
(dE/dx and TOF) > B field direction reversable

= Cental Drit Chamber I8
N B EM Cabrimeter sl
_—EM Stonerhiax

[ Hacron Cakeimeter

Muon Scintillators P “
(R ——
%

|Muon Chambers
A

[ Muon Detector
Steel (Magn. yokes)

I1SL Si Layers
SVXCII Sidetector




Signal Sample

Mixing phase (s and decay width difference Al are extracted using an
unbinned maximum likelihood fit in

> Mass
> Tagging information

> Proper decay time and Transversity angles

CDF Do
~ 500
2 [ D@, 28" * Data
CDF Runll Preliminary L =2.815" 2t i} —Total Fit
3 wop 15 400 T, — Prompt Bkg
F a0 * gl_ — non-Prompt Bkg
§ 1%
H £ 300
pi ]
\ =
4 2
- LA
/ 8200:
X 4 *{'M B 100\
Bl bt b g -
526 53 532 534 5% 536 54 542 544 546 51 52 53 54 55 56 57 58
m (Jy O)[GeV] Mass (GeV)
~ 3200 events ~ 2000 events

(without PID)
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Flavour Tagging

Mixing phase s and decay width difference Al are extracted using an
unbinned maximum likelihood fit in

> Mass
> Tagging information

> Proper decay time and Transversity angels

Tagging used to increase the sensitivity

K e gy Smeside on the parameters.
iy Approach:
¢K’ » OST: exploits decay products of

other b-hadron in the event

» SST: exploits the correlations with
particles produced in
fragmentation

.. . =
Opposite side =

Output: Decision (b or b) and probability of being correct ﬂ(IT



Proper Decay Time

Mixing phase (s and decay width difference Al are extracted using an
unbinned maximum likelihood fit in

> Mass
» Tagging information

> Proper decay time and Transversity angels

CDF Do
g10"
CDF Run Il Preliminary 2381’ = D@, 2.8 fi5 * Data
E F 2 . o — Total Fit
g“’j:’ Q10 Bs -~ Jyo - Total Signal
E F 2 F Mass 5.26 - 5.46 GeV ..... cp_gyen
3 0
L %102; -+ CP-odd
E s F — Background
£ 5
2
©
10 o
1E
C 1 i Il
03 3 03 10037 0 01 02 03 4 05
ot (Jy ) [em] ct (cm)

CDF: 7(Bs) = (1.53 & 0.04(stat.) £ 0.01(syst.))ps
DD 7(BL) = (152 £ 0.05(stat) £ 0.01(syet ))ps AT



Lifetime and Transversity Angels

Time and angular probability for B?:

d*P(t, p)
dtdg

Tx (1)

u(t)

V(t)

X

+

+

Ao A(A) T+ (2) + |A) *R(7) T+ (t)
|ALPR(A)T-(t) + | Aol A} 1fs(5) cos(8)) T+ (t)

[A A LIfa(P)U() + |Aol|ALIfs(P)V(2)

et [cosh(ATt/2) T cos(28s) sinh(Alt/2)
Fnsin(Amst) sin(23s)]

et [cos(6, — d1)sin(25s) sinh(Ar't/2)
+mncos(Amst) sin(dL —dy))
—nsin(Amst) cos(61 — §)|) cos(23s) |

e " [cos(81 ) sin(28s) sinh(Alt/2)
+ ncos(Amst) sin(d,)
—nsin(Amst) cos(d ) cos(25s) ]
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Lifetime and Transversity Angels

Time and angular probability for B?:

4
TPED oo 1l a(IT () + 14 PRAT ()
17
+ IALPAET- (D) + [Aol1Ay(7) cos(@)TH(8) gy 1anation
+ A ALIG(PU(E) + |Aol|A LI fs (2) V(1) » Angular functions
Ti(t) = e "t [cosh(Alt/2) T cos(28s)sinh(Alt/2)
Fnsin(Amst) sin(23s)]
Uut) = et [cos(él — d)|) sin(2Bs) sinh(Al't/2)
+mncos(Amst) sin(dL —dy))
—nsin(Amst) cos(61 — §)|) cos(23s) |
V(t) = e "cos(d,)sin(28s)sinh(Alt/2)

+ ncos(Amst) sin(d,)
—nsin(Amst) cos(d ) cos(25s) ]
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Lifetime and Transversity Angels

Time and angular probability for B?:

d*P(t, p)
dtdg

Tx (1)

u(t)

V(t)

R

+

+

|Ao? A (5) T (t) + |A| PR(5) T: (1)
AL PA(AYT-(2) + AollA) 155(7) cos(@) T (D) Eyh1anation

AIALI U + Aol AL (V) » Angular functions

> Polarization
et [cosh(ATt/2) F cos(20s) sinh(Alt/2) amplitudes
Fnsin(Amst) sin(23s)]

et [cos(6, — d1)sin(25s) sinh(Ar't/2)
+mncos(Amst) sin(dL —dy))
—nsin(Amst) cos(61 — §)|) cos(23s) |

e " [cos(81 ) sin(28s) sinh(Alt/2)
+ ncos(Amst) sin(d,)
—nsin(Amst) cos(d ) cos(25s) ]
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Lifetime and Transversity Angels

Time and angular probability for B?:

d*P
PED o JmlRGIT () + 14 PRAT (0
tdp
£ IALPBT () + Aol A (D) cosBNTH(0) g
+ A IALIAPUE) + Aol IALIB(AV() » Angular functions
> Polarization
Ti(t) = e "t[cosh(Alt/2) F cos(20s)sinh(Alt/2) amplitudes
Fnsin(Amst) sin(20s)] » Time evolution
Ut) = e " cos(5L —d))sin(20s) sinh(Al't/2)
+mncos(Amst) sin(dL —dy))
—nsin(Amst) cos(61 — §)|) cos(23s) |
V(t) = e "[cos(6,)sin(20s)sinh(Alt/2)

+ ncos(Amst) sin(d,)
—nsin(Amst) cos(d ) cos(25s) ]
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Lifetime and Transversity Angels

Time and angular probability for B?:

d*P(t,
TPED o |aPRAT () + 141 PR T (1
tdp
£ IALPBT () + Aol A7) cos(BTH(0) g
+ A IALIAPUE) + Aol IALIB(AV() » Angular functions
» Polarization
Ti(t) = e "t[cosh(Alt/2) F cos(20s)sinh(Alt/2) amplitudes
Fnsin(Amst) sin(26s)] » Time evolution
e ) ) » Strong phases
Uty = e 'leos(s) — d)|) sin(20s) sinh(Al't/2) 61 = arg(ALAY)
+77cos(Am5t) sin(éL — 5H) 5” = arg(AHAa‘)
—nsin(Amst) cos(61 — d)|) cos(23s) |
V(t) = e "[cos(d,)sin(28s)sinh(Alt/2)

+ ncos(Amst) sin(d,)
—nsin(Amst) cos(d ) cos(20s)]
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Lifetime and Transversity Angels

Time and angular probability for B?:

d*P(t, p)
dtdg

T1(t)

u(t)

+

+

Ao ()T (1) + 1A PR T (1)

|ALPF(7)T-(t) + Aol |A)| |5 () cos(3]) T+ (t)

A AL (P)U(t) + |Aol|ALIfs(P)V (1)

e "t [cosh(ATt/2) T cos(28s) sinh(Alt/2)
Fnsin(Amst) sin(23s)]

et [cos(d, — d))) sin(20s) sinh(A't/2)
+mncos(Amst) sin(d —dy|)
—nsin(Amst) cos(61 — d)|) cos(23s) |

e " [cos(51 ) sin(28s) sinh(Al't/2)
+ ncos(Amst) sin(d,)
—nsin(Amst) cos(d ) cos(20s)]

v

Explanation

Angular functions

Polarization
amplitudes

Time evolution

Strong phases
01 = arg(ALAY)
5” = arg(AHAa‘)
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Lifetime and Transversity Angels

Time and angular probability for B?:

d*P(t, p)
dtdj

T1(t)

u(t)

+

+

Ao ()T (1) + 1A PR T (1)

|ALPF(7)T-(t) + Aol |A)| |5 () cos(3]) T+ (t)

A AL (P)U(t) + |Aol|ALIfs(P)V (1)

e "t [cosh(ATt/2) T cos(20s) sinh(Al't/2)
Fnsin(Amst) sin(23s)]

et [cos(6. — &))sin(23s) sinh(ATt/2)
+mncos(Amst) sin(d — 0)|)
—nsin(Amst) cos(61 — d)|) cos(23;) ]

e " [cos(51 ) sin(203s) sinh(Al't/2)
+ ncos(Amst) sin(d,)
—nsin(Amst) cos(5 ) cos(23s)]

v

Explanation

Angular functions

Polarization
amplitudes

Time evolution

Strong phases
01 = arg(ALAY)
5” = arg(AHAa‘)

CPV Phase
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RENES

> Errors of 35 and AT are not Gaussian — study confidence region

» Both experiments show the same tendency

CDF 2 Do 3
CDF Run Il Preliminary L = 2.8 iy’
F — SM prediction
— 0.6 — 9s%cC.L.
w [ — 68%CL.
£ 04r
= 0.2f 22 @ DO, 2.81b7
2F @ F
F 30.3; "B Iye
0.0 oz AM, = 17.77 ps”
-020 s
-0.4F o
:, == New Physics ° 1; —sMm
_0'6" P S S B F I AT =Arg, x[cos(@)l
- 1 015105 0 05 I is
B, (rad) ’ ' ", (radian)
(with constraint on strong phase)
p — value = 7% p — value = 8.5%
1.8 o from SM 1.7 o from SM

Remember: 237/ = —¢J/V? ﬂ(IT

2http:/ /www-cdf.fal. gov/physics/ new,/bottom /080724 blessed- tagged_BsPsiPhi_update_prelim/
3 ttp:/ /www-d0.fnal.gov/Run2Physics/WWW /results/final /B /BO8A/



Combined Results

Combination of the up-to-date D& measurement with the previous CDF
measurement *:

HFAG
0 COF 1.35 tb+ Dfl 2.8 "
—o0 ‘ : : : ‘
. 68% CL
O 04f 95% CL
w
99.7% CL —
= 0.2+ ’
q t
) {
\\/ p-value = 0.031
0.4l 2.20 from SM
0.6 s s : ‘ :
-3 -2 -1 0 1 2 3

¢7/"? [rad]
p — value = 3.1%

2.2 o from SM ﬂ(IT

4http:/ /hep.physics.indiana.edu/ “rickv/hfag/combine.dGs. html




Evolution in the Past and Future Possibilities

Evolution of the deviation from the SM: Probability to observe a non-SM f; at

CDF:
CDF Simulated Data, Assume |3s =0.4
Date Analysis Deviation > L0r ngmb,dmm
Dec 2007  CDF (1.35/fb) 150 = et CR
Mar 2008 D@ (2.8/fb) 170 £ 08
Jul 2008 Combination 220 il& 060
Jul 2008 CDF (2.8/fb) 180 E ’
B 0.4r
p=4
Fluctuations? Maybe! But the coherent 02k
pattern is interesting! ’
04 5 10

Integrated Luminosity (fb)
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Conclusions and Future Plans

Conclusions:
> Measurements of CPV in Bs system done by both CDF and D&
» Study confidence region in Al-(s plane
Both CDF and D@ observe 1-2 ¢ deviations from SM predictions
The (old) combined HFAG result has 2.2 ¢ deviation
Future Plans:
» Both Experiments: Collect more data (Plan: 6-8/fb)

v

\4

» D@ : Selection improvements

» CDF: Improvements in Tagging and PID
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Thanks for your Attention
and

Stay tuned for Updates!
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Angular Functions

f(p) 2cos’Wr(1 — sin*Orcos’pr)
H(p) = sin®Wr(l— sin*Orsin’ér)
f(p) = sin*Wrsin®Or

fa(p) = —sin*Vrsin207sindr

() = 1/V2sin2Vrsin®0rsin2¢r
fs(p) = 1/ﬁsin2\llrsin207cos¢r
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Do : Angular Projections

b

! - o
3 D3, 281" s b 3 b2, 281 + Data g D@, 281" ~ Data
2000 BY - Jyg E:ae';‘:\ g B~ e — Total Fit ook B~ Jyo — Total Fit
) 5.26< M(B,) <5.46 GeV CP-odd 2 5.26< M(B,) <5.46 GeV Total Signal R 5.26< M(B,) <5.46 GeV Total Signal
£ Total Signal 100 ct/o(ct) >5 — Background 5 -
I3 tlo(ct) > 5 ct/o(ct) > 5
150 ctiotet) — Background & S50 (ct)

50

) 50~

T T TN T e
108 06 04 02 0 02 04 06 08 1 I T2
Transversity

T PN TR PO T |
°1 -08 06 -04 02 0 02 04 06 08 1
Cos(y)
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CDF: Angular Projections

CDF Run |l Preliminar L=28fb" CDF Run Il Preliminary L=28fb" CDF Run Il Preliminary L=28fb?
2 800 800,

700E by

800

— alldata ]
500F i s 500F — signal region data
o —a
signal region data 1000 et gion data 2000 —— sideband region data
sidaband ugon e —— sideband region data —— fit projections
it projections. fit projections
300 : , ,

005 10 % ] 4 6 4605 0005 10
cos(¥) @ (radians) cos(©)
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Do : Likelihood Scan

20F (b) ~22E(©)
:'Els :'EZO
< :CL15
[
& 10 S 10
5 5
03" 27170 1 2 3 %4 02 0 02 04
o, (radian) aT, (ps')
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CDF: 2D likelihood profile comparison with published result

CDF Run Il Preliminary L=28fb*
__ 06 a

‘n
£ 04

< 0.2

0.0

-0.2
-0.4

-0.6
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CDF: OST in BT

CDF Run Il Preliminary L=281" CDF Run Il Preliminary L=281"

=1.0¢ < 1.0¢
£ 00k B only, £ 1.35 1™ £ 00l B only, 213510t
5091 So0.
Z f Slope=0.82+0.13 = Slope =0.91+ 0.16
0.8 - 0.
e E 2
> E >
EDJ:— :@0.
Q E [
E0.60 £0.
B 7
005 oo.
zZ E z
ZoaL Z0.

0.3 o.

0.2F o.

01 0.

AT 1 T T T TRV ETEY FTRTE TR T 0. NI I T T N T N T I
80 0.1 02 03 04 05 0.6 0.7 0.8 09 1.0 8.0 0.1 02 0.3 0.5 0.6 0.7 0.8 0.9 1.0
NN OST predicted dilution NN OST predicted dilution
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CDF: OST in B~

CDF Run Il Preliminary L=281" CDF Run Il Preliminary L=281"
=1.0¢ < 1.0¢
£ 00k B only, £ 1.35 0 £ 00k B only, 213510t
5091 So0.
Z [ Slope=0.93+0.15 = Slope =1.04+0.17
0.8 - 0.
e E 2
> E h— >
go7E L Zo.
Q E [
E0.60 £0. T
B 7
005 oo.
zZ E z
ZoaL Z0.
0.3 o.
E ——
0.2E 0.
015 0.
27
0gEuLial, N T T N P T og ol bbbl b Lo oo,
0 010203040506 070809 10 .0 0.1 0.2 0.3 0.4 05 0.6 0.7 0.8 0.9 1.0
NN OST predicted dilution NN OST predicted dilution
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CDF: OST in B*

CDF Run Il Preliminary L=281" CDF Run Il Preliminary L=281"

=1.0¢ < 1.0¢
200 B*" combined, 1 1.35 fb™* £, oF B combined, 2"1.35 fig
5091 So0.
Z L Slope=0.88+0.10 = Slope =0.98+ 0.12
0.8 - 0.
e E 2
> E >
EDJ:— :80.
Q E [
E0.60 £0.
B 7
005 oo.
zZ E z
Z0.4F Z.

0.3 o.

0.2F o.

01 0.

(Y A I I Tt AT T S P T T 0. I T T N O N T

8.0 0.1 02 03 04 05 0.6 0.7 0.8 09 1.0 8.0 0.1 02 03 04 05 06 0.7 08 09 1.0

NN OST predicted dilution NN OST predicted dilution
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CDF: Neural Network for B*

CDF Run 2 Preliminary L ~ 2.8 fb*

— Signal
— Background

o

12000

10000
8000

Candidates

6000
4000

2000+

07 L
-1.0 -0.5 0.0 0.5 1.0
Neural network output
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CDF: Neural Network for Bs

CDF Run 2 Preliminary L ~ 2.8 fb*

N e
S 10000
C: i — Signal
<] L — Background
o 8000~
4 L
©
o
T 6000}
c
©
(@)
-1.0 -0.5 0.0 0.5 1.0

Neural network output
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CDF: Invariant Mass of Bt

CDF Run Il Preliminary L =2.8fb"
2 3500

+

3000

events/2M

2500

2000

1500

‘T\‘HH‘HH‘HH‘HH‘

1000

500

TR R S TR TS T X R VI T
m (31 K*)[GeV]
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